124 research outputs found

    The theoretical value of encounters with parasitized hosts for parasitoids

    Get PDF
    A female parasitoid searching for hosts in a patch experiences a diminishing encounter rate with unparasitized and thus suitable hosts. To use the available time most efficiently, it constantly has to decide whether to stay in the patch and continue to search for hosts or to search for and travel to another patch in the habitat. Several informational cues can be used to optimize the searching success. Theoretically, encounters with unparasitized hosts should lead to a prolonged search in a given patch if hosts are distributed contagiously. The results of empirical studies strongly support this hypothesis. However, it has, to date, not been investigated theoretically whether encounters with already parasitized hosts (which usually entail time costs) provide a parasitoid with valuable information for the optimization of its search in depletable patches, although the empirical studies concerning this question so far have produced ambiguous results. Building on recent advances in Bayesian foraging strategies, we approached this problem by modeling a priori searching strategies (which differ in the amount of information considered) and then testing them in computer simulations. By comparing the strategies, we were able to determine whether and how encounters with already parasitized hosts can yield information that can be used to enhance a parasitoid's searching succes

    Increased aridity drives post‐fire recovery of Mediterranean forests towards open shrublands

    Full text link
    Recent observations suggest that repeated fires could drive Mediterranean forests to shrublands, hosting flammable vegetation that regrows quickly after fire. This feedback supposedly favours shrubland persistence and may be strengthened in the future by predicted increased aridity. An assessment was made of how fires and aridity in combination modulated the dynamics of Mediterranean ecosystems and whether the feedback could be strong enough to maintain shrubland as an alternative stable state to forest. A model was developed for vegetation dynamics, including stochastic fires and different plant fire‐responses. Parameters were calibrated using observational data from a period up to 100 yr ago, from 77 sites with and without fires in Southeast Spain and Southern France. The forest state was resilient to the separate impact of fires and increased aridity. However, water stress could convert forests into open shrublands by hampering post‐fire recovery, with a possible tipping point at intermediate aridity. Projected increases in aridity may reduce the resilience of Mediterranean forests against fires and drive post‐fire ecosystem dynamics toward open shrubland. The main effect of increased aridity is the limitation of post‐fire recovery. Including plant fire‐responses is thus fundamental when modelling the fate of Mediterranean‐type vegetation under climate‐change scenarios

    The Effect of Chemical Information on the Spatial Distribution of Fruit Flies: II Parameterization, Calibration, and Sensitivity

    Get PDF
    In a companion paper (Lof et al., in Bull. Math. Biol., 2008), we describe a spatio-temporal model for insect behavior. This model includes chemical information for finding resources and conspecifics. As a model species, we used Drosophila melanogaster, because its behavior is documented comparatively well

    Stability and Fluctuations in Complex Ecological Systems

    Full text link
    From 08-12 August, 2022, 32 individuals participated in a workshop, Stability and Fluctuations in Complex Ecological Systems, at the Lorentz Center, located in Leiden, The Netherlands. An interdisciplinary dialogue between ecologists, mathematicians, and physicists provided a foundation of important problems to consider over the next 5-10 years. This paper outlines eight areas including (1) improving our understanding of the effect of scale, both temporal and spatial, for both deterministic and stochastic problems; (2) clarifying the different terminologies and definitions used in different scientific fields; (3) developing a comprehensive set of data analysis techniques arising from different fields but which can be used together to improve our understanding of existing data sets; (4) having theoreticians/computational scientists collaborate closely with empirical ecologists to determine what new data should be collected; (5) improving our knowledge of how to protect and/or restore ecosystems; (6) incorporating socio-economic effects into models of ecosystems; (7) improving our understanding of the role of deterministic and stochastic fluctuations; (8) studying the current state of biodiversity at the functional level, taxa level and genome level.Comment: 22 page

    The Effect of Chemical Information on the Spatial Distribution of Fruit Flies: I Model Results

    Get PDF
    Animal aggregation is a general phenomenon in ecological systems. Aggregations are generally considered as an evolutionary advantageous state in which members derive the benefits of protection and mate choice, balanced by the costs of limiting resources and competition. In insects, chemical information conveyance plays an important role in finding conspecifics and forming aggregations. In this study, we describe a spatio-temporal simulation model designed to explore and quantify the effects of these infochemicals, i.e., food odors and an aggregation pheromone, on the spatial distribution of a fruit fly (Drosophila melanogaster) population, where the lower and upper limit of local population size are controlled by an Allee effect and competition. We found that during the spatial expansion and strong growth of the population, the use of infochemicals had a positive effect on population size. The positive effects of reduced mortality at low population numbers outweighed the negative effects of increased mortality due to competition. At low resource densities, attraction toward infochemicals also had a positive effect on population size during recolonization of an area after a local population crash, by decreasing the mortality due to the Allee effect. However, when the whole area was colonized and the population was large, the negative effects of competition on population size were larger than the positive effects of the reduction in mortality due to the Allee effect. The use of infochemicals thus has mainly positive effects on population size and population persistence when the population is small and during the colonization of an area

    The pest kill rate of thirteen natural enemies as aggregate evaluation criterion of their biological control potential of Tuta absoluta

    Get PDF
    Ecologists study how populations are regulated, while scientists studying biological pest control apply population regulation processes to reduce numbers of harmful organisms: an organism (a natural enemy) is used to reduce the population density of another organism (a pest). Finding an effective biological control agent among the tens to hundreds of natural enemies of a pest is a daunting task. Evaluation criteria help in a first selection to remove clearly ineffective or risky species from the list of candidates. Next, we propose to use an aggregate evaluation criterion, the pest kill rate, to compare the pest population reduction capacity of species not eliminated during the first selection. The pest kill rate is the average daily lifetime killing of the pest by the natural enemy under consideration. Pest kill rates of six species of predators and seven species of parasitoids of Tuta absoluta were calculated and compared. Several natural enemies had pest kill rates that were too low to be able to theoretically reduce the pest population below crop damaging densities. Other species showed a high pest reduction capacity and their potential for practical application can now be tested under commercial crop production conditions

    The pest kill rate of thirteen natural enemies as aggregate evaluation criterion of their biological control potential of Tuta absoluta

    Get PDF
    Ecologists study how populations are regulated, while scientists studying biological pest control apply population regulation processes to reduce numbers of harmful organisms: an organism (a natural enemy) is used to reduce the population density of another organism (a pest). Finding an effective biological control agent among the tens to hundreds of natural enemies of a pest is a daunting task. Evaluation criteria help in a first selection to remove clearly ineffective or risky species from the list of candidates. Next, we propose to use an aggregate evaluation criterion, the pest kill rate, to compare the pest population reduction capacity of species not eliminated during the first selection. The pest kill rate is the average daily lifetime killing of the pest by the natural enemy under consideration. Pest kill rates of six species of predators and seven species of parasitoids of Tuta absoluta were calculated and compared. Several natural enemies had pest kill rates that were too low to be able to theoretically reduce the pest population below crop damaging densities. Other species showed a high pest reduction capacity and their potential for practical application can now be tested under commercial crop production conditions.Centro de Estudios Parasitológicos y de Vectore

    Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections

    Get PDF
    Dose response in micro-parasite infections is usually shallower than predicted by the independent action model, which assumes that each infectious unit has a probability of infection that is independent of the presence of other infectious units. Moreover, the prevalence of mixed-genotype infections was greater than predicted by this model. No probabilistic infection model has been proposed to account for the higher prevalence of mixed-genotype infections. We use model selection within a set of four alternative models to explain high prevalence of mixed-genotype infections in combination with a shallow dose response. These models contrast dependent versus independent action of micro-parasite infectious units, and homogeneous versus heterogeneous host susceptibility. We specifically consider a situation in which genome differences between genotypes are minimal, and highly unlikely to result in genotype-genotype interactions. Data on dose response and mixed-genotype infection prevalence were collected by challenging fifth instar Spodoptera exigua larvae with two genotypes of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), differing only in a 100 bp PCR marker sequence. We show that an independent action model that includes heterogeneity in host susceptibility can explain both the shallow dose response and the high prevalence of mixed-genotype infections. Theoretical results indicate that variation in host susceptibility is inextricably linked to increased prevalence of mixed-genotype infections. We have shown, to our knowledge for the first time, how heterogeneity in host susceptibility affects mixed-genotype infection prevalence. No evidence was found that virions operate dependently. While it has been recognized that heterogeneity in host susceptibility must be included in models of micro-parasite transmission and epidemiology to account for dose response, here we show that heterogeneity in susceptibility is also a fundamental principle explaining patterns of pathogen genetic diversity among hosts in a population. This principle has potentially wide implications for the monitoring, modeling and management of infectious diseases
    corecore